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Fig. 1. With the rough reconstruction (left) based on spare viewpoints selected via autonomous scanning (middle), our scene CAD recomposition result (right)
can faithfully reflect the object geometry and arrangement in the given scene. Note that the corresponding CAD models are retrieved and their relative poses
are optimized online with the few automatically optimized scanning viewpoint, even though the scene is only partially reconstructed.

Autonomous surface reconstruction of 3D scenes has been intensely studied
in recent years, however, it is still difficult to accurately reconstruct all the
surface details of complex scenes with complicated object relations and
severe occlusions, which makes the reconstruction results not suitable for
direct use in applications such as gaming and virtual reality. Therefore, in-
stead of reconstructing the detailed surfaces, we aim to recompose the scene
with CAD models retrieved from a given dataset to faithfully reflect the
object geometry and arrangement in the given scene. Moreover, unlike most
of the previous works on scene CAD recomposition requiring an offline re-
constructed scene or captured video as input, which leads to significant data
redundancy, we propose a novel online scene CAD recomposition method
with autonomous scanning, which efficiently recomposes the scene with
the guidance of automatically optimized Next-Best-View (NBV) in a single
online scanning pass. Based on the key observation that spatial relation in
the scene can not only constrain the object pose and layout optimization
but also guide the NBV generation, our system consists of two key modules:
relation-guided CAD recomposition module that uses relation-constrained
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global optimization to get accurate object pose and layout estimation, and
relation-aware NBV generation module that makes the exploration during
the autonomous scanning tailored for our composition task. Extensive ex-
periments have been conducted to show the superiority of our method over
previous methods in scanning efficiency and retrieval accuracy as well as
the importance of each key component of our method.
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Redundancy; Robotics; • Networks → Network reliability.
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1 INTRODUCTION
With the increasing demand for applications such as augmented
and virtual reality, gaming, and robotics, there are intensive stud-
ies focusing on the surface reconstruction of indoor scenes with
RGB-D sensors [Charrow et al. 2015; Huang et al. 2020; Wu et al.
2014; Xu et al. 2015]. However, significant noise and errors will be
introduced into the reconstructed results due to the increase of the
number of objects, the influence of different materials of objects,
and the effect of lighting that changes over time in the real world.
Since the realistic scene with high-quality meshes is desperately
needed by applications such as gaming and virtual reality, instead of
reconstructing the detailed surfaces, we aim to recompose the scene
with high-quality CAD models retrieved from a given dataset to
faithfully reflect the object geometry and arrangement in the given
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scene, which is referred to as scene CAD recomposition [Avetisyan
et al. 2018a; Izadinia and Seitz 2018].

Most of the previous works on scene CAD recomposition require
an offline reconstruction of the scene as input [Avetisyan et al. 2018a,
2019, 2020], where the recomposition task is usually split into two
sub-processes: the representation of the entire scene such as the
mesh or the distance field is first constructed, and then the corre-
sponding CAD models are retrieved and aligned with the objects in
the reconstructed results. As a result, additional time consumption
and computational cost are introduced due to the redundant data
capture for full scene reconstruction. There are also works trying
to directly recompose the scene with CAD models from the given
sequence of scanning observations [Han et al. 2021; Maninis et al.
2020], without explicitly reconstructing the scene. However, the
scanning sequence is still captured offline instead of tailored for
the recomposition task, it is not sure how to obtain a video that is
most appropriate for the task, and the data redundancy problem
also remains.

Compared with surface reconstruction which tries to fully restore
the rich details of the scene, CAD recomposition is a more abstract
expression of the scene aiming to reflect the arrangement of ob-
jects and their relationships and thus requires much less scanning
data, so it drives us to optimize the viewpoint selection strategy for
scene CAD recomposition. Moreover, inspired by recent works on
autonomous reconstruction that reconstruct the scene with higher
scanning efficiency and less data redundancy by autonomous scan-
ning using robots with optimized viewpoints [Guo et al. 2022; Liu
et al. 2018, 2021; Schmid et al. 2020; Xu et al. 2017], our work aims
to solve CAD recomposition problem of unknown indoor scenes
online with one-pass autonomous scanning.
The key challenges of the online CAD recomposition problem

are two-fold: accurate CAD recomposition with partial scans and
appropriate viewpoint selection for recomposition. Different from
the scanned objects with complete geometric shapes in the recon-
structed results, the objects during the autonomous scanning pro-
cess are often incomplete, and thus it is more difficult to retrieve
and further align corresponding CAD models for partially-scanned
objects. Moreover, as the goal of CAD recomposition is different
from that of surface reconstruction, with our task focusing more
on object approximation and arrangement recovery other than sur-
face details, the guideline for the Next-Best-View (NBV) generation
during autonomous scanning would be quite different. To address
the above challenges, our key observation is that spatial relations
in the scene can be used to not only get more accurate CAD recom-
position but also guide the NBV generation. The relations between
different objects as well as the relations between objects and layout
(i.e., the floor and walls of the scene) can help us determine whether
the categories of objects are accurate and reasonable, guide the
optimization of object poses as well as the following retrieval, and
discover unscanned objects and important interaction regions for
NBV generation.

Based on the above key observation, we propose an online scene
CAD recomposition method with autonomous scanning consisting
of two key components: relation-guided CAD recomposition and
relation-aware NBV generation. For relation-guided CAD recom-
position, we make the retrieval benefit from the global object pose

optimization with relation guidance. Different from most existing
works of scene recomposition [Avetisyan et al. 2018a, 2019, 2020; Iza-
dinia and Seitz 2018], which first retrieves CAD models for objects
and then optimize their poses with relation guidance, we perform
a global optimization of object poses and scene layout with rela-
tion guidance first and then use the optimized more accurate object
poses to retrieve CAD models with better geometry alignment for
partial objects. For relation-aware NBV generation, other than the
traditional frontier points for exploration of unknown regions, we
add object points for retrieval adjustment and relation points for
spatial relation refinement. All those three types of points will be
considered comprehensively and fused according to their different
importance to determine the region of interest (ROI) in the current
scene to guide the generation of NBV pointing to the point with the
highest interest. Hence, the NBV generated by our method endows
the robot with different perception capabilities, which enables the
robot to simultaneously explore the unknown area, optimize rela-
tions between both objects and layout and retrieve corresponding
CAD models for objects in a more efficient way.
To summarize, we propose a novel online scene CAD recompo-

sition method with autonomous scanning which guides the robot
to efficiently scan and analyze the unknown scene, and eventually
recompose the scene with retrieved high-quality CAD models and
estimated room layout that faithfully resemble the object geometry
and arrangement. We show that compared to existing offline recom-
position methods and other baselines, our online method obtains
higher retrieval accuracy as well as scanning efficiency. Ablation
studies are also conducted to validate the importance of each key
component of our method. Moreover, we also test our method on a
real robot to show the applicability of our method in the real world.
Our technical contributions include:

• An online scene CAD recomposition system that can guide
the robot to autonomously scan and recompose unknown 3D
scenes with high efficiency.

• A relation-guided CAD recompositionmethod that uses relation-
constrained global optimization to get accurate object pose
and layout estimation for more accurate object retrieval.

• A relation-aware NBV generation method that makes the
exploration during the autonomous scanning tailored for our
composition task.

2 RELATED WORK

2.1 Scene CAD recomposition
As the noise contained in the results of surface reconstruction is un-
acceptable to be served for applications such as gaming and virtual
reality, some works focus on the offline scene CAD recomposition
to estimate the arrangement from the given scanned data such as
meshes and point clouds of the single object [Kim et al. 2013] or
the scene [Avetisyan et al. 2018a; Ishimtsev et al. 2020; Izadinia and
Seitz 2018; Li et al. 2015; Salas-Moreno et al. 2013]. The work of
Avetisyan et al. [2018a] first proposes the concept of Scan2CAD,
which aims to retrieve corresponding CAD models and align CAD
models with objects from the given reconstructed result, but they
predict the keypoints in the scanned data and then estimate the
matching score between objects corresponding to each keypoint
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Fig. 2. Overview of our online scene CAD recomposition method. Given the current information fused by RGBD images captured in previous iterations
(a), a relation-guided scene CAD recomposition module is applied to retrieve CAD models with poses optimized for relation constraints and local geometry
alignment (b), and then the Next-Best-View (NBV) is generated to guide the autonomous scanning and refine the recomposition results by taking different
kinds of ROIs into consideration.

and all CAD models, which is time-consuming. More recent works
[Avetisyan et al. 2019, 2020] try to retrieve CADmodels with the em-
bedded feature and then align CAD models with objects with high
efficiency. Some other works do not require reconstructed results
as input, but instead recompose the objects directly from a single
image [Gümeli et al. 2021; Kuo et al. 2020, 2021; Uy et al. 2021] or a
sequence of RGB images [Han et al. 2021; Maninis et al. 2020; Shao
et al. 2012]. Moreover, the work of [Avetisyan et al. 2020] also tries
to optimize the poses of objects globally after corresponding CAD
models are retrieved.

Compared with those previous works that either rely on an inter-
mediate reconstruction result or a pre-shot video, generating the
scene recomposition through one-pass scanning can not only save
time and computational consumption but also enhance the retrieval
accuracy via optimizing the viewpoints based on the current results
on the way. Therefore, our work that aims to achieve an online
method by generating the recomposition of the scene from scanned
RGB-D observations in one pass has a quite different setting, which
also results in new challenges. Different from the complete shapes
of objects in the reconstructed result, the objects are often partially
scanned during the scanning process which makes it difficult to get
accurate retrieval and alignment results for objects. To overcome
this obstacle, inspired byworks [Wang et al. 2020; Zhang et al. 2021a]
that use object relation to improve the 2D object detection accuracy
or 3D object reconstruction quality, we proposed a relation-guided
scene CAD recomposition, which utilizes relationships between
objects and the layout to get more accurate object poses first and
then further utilize the input geometry together with the optimized
poses to guide the retrieval.

2.2 Autonomous scene reconstruction
Robots assisting people in conducting various tasks is a growing
trend these days, and some researchers have started to focus on
autonomous reconstruction to make a 3D digital representation of

the real world. Unlike manual scanning, autonomous scanning with
the robot is goal-driven, which reduces data redundancy and time
consumption greatly. In the beginning, many works are dedicated
to the scanning of single object [Krainin et al. 2011; Vasquez-Gomez
et al. 2014; Wu et al. 2014], and then the goal is extended to the
entire scene [Charrow et al. 2015; Ramanagopal and Le Ny 2016;
Schmid et al. 2020; Xu et al. 2015, 2016]. There are also works trying
to enhance the reconstruction quality simultaneously with a fast
covering of the unknown scene by paying more attention to objects
of the scene [Guo et al. 2022; Heng et al. 2015; Liu et al. 2018, 2021;
Roberts et al. 2017; Xu et al. 2017].

Since autonomous scanning greatly improves the efficiency and
quality of surface reconstruction, we also try to generate the scene
CAD recomposition for the unknown indoor scene efficiently by
autonomous scanning. However, different from previous works
that are reconstruction-oriented, when aiming for the scene CAD
recomposition task, the generated viewpoints should be able to
help retrieve more accurate CAD models and obtain more reliable
relationships between both objects and layout, instead of more
surface details of the objects. Therefore, we propose a relation-
aware NBV generation module, which uses the estimated relations
to guide the selection of viewpoints that help both retrieving and
pose estimating at most. Note that the method of [Liu et al. 2018]
also retrieves CAD models for partially scanned objects during the
process to guide the selection of viewpoints, however, the purpose of
this method is still to fully reconstruct all surfaces in the scene and
this leads to a fundamental difference in the choice of viewpoints.

3 OVERVIEW
Given a random initial pose of the robot in an unknown indoor
scene, our goal is to automatically output a sequence of optimized
viewpoints to guide the online scanning of the scene for CAD recom-
position, which consists of the room layout and a set of retrieved
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(a) (b) (c) (d)

Fig. 3. Room layout construction. Given the 2D occupancy map, we first extract the boundary edges using the minimum polygon fitting method [Douglas and
Peucker 1973], which results in many short edges (a), and thus we further cluster the short edges based on parallel relationships (b) to obtain several longer
and dominant boundary lines around the obstacles instead of frontiers (c), which are then eventually extended to get the final enclosed floor region (d).

CAD object models with both geometry and arrangement resem-
bling the 3D scene. Figure 2 shows an overview of one iteration of
our CAD recomposition and NBV generation method.
In each iteration, our method first fuses all the historical RGBD

scans captured in the past as well as their instance segmentation
results obtained using Mask R-CNN [He et al. 2017] to get the partial
scan of each object, where object instance is maintained by the
KNN method [Cover and Hart 1967] based on the bounding boxes
of objects. Then the fused point cloud is further projected to the
ground to get the updated 2D occupancy grid, as shown in Figure 2
(a). The updated information will be passed to the relation-guided
scene CAD recomposition module to get the optimized layout and
object pose together with the corresponding retrieved CAD models,
as shown in Figure 2 (b). Then, the updated occupancy grid of the
scene, the retrieval results of objects, and the relation groups will be
collected and fused by the NBV generator to obtain a new viewpoint
to enter the next iteration, as shown in Figure 2 (c). Iteration ends if
no more new viewpoints can be generated.

Relation-guided CAD recomposition. Given the partial scan of
each object, a global shape feature is extracted together with its
9DoF pose represented by the oriented bounding box (OBB) through
the object pose estimation module. In the meanwhile, the room
layout is also constructed based on the 2D occupancy grid. Then
they are passed to the relation-guided optimization module to get
more accurate estimations with the relation constraints. Finally,
for each object, its partial scan and its refined pose will be used to
retrieve the most similar CAD model from a given dataset that also
aligns well with the partial input geometry. Note that during the
relation-guided optimization, we also output the relation confidence
between different objects, which is later used to help guide the
following NBV generation. More details about the relation-guided
CAD recomposition module are provided in Section 4.

Relation-aware NBV generation. To find the viewpoint that serves
our task best, three different kinds of interest points are considered
to guide the NBV generation, including frontier points, object points,
and relation points. The frontier points are generated from the
occupancy grid to guide the robot to scan unknown areas. The
object points are generated from the comparison between each
object with its retrieved CAD model to obtain the region to be
observed that can improve the retrieval confidence of the object.
The relation points tell the robot the relations of which areas need to
be confirmed and updated in the scene. We determine an ROI region

around each interest point and fuse all the ROI regions together to
build an interest map of the current scene so that it can be used
to identify several locations with high interest, then we generate
the viewpoint that points to the selected location with the minimal
transfer effort of the robot given the current pose. More details
about the interest point construction and NBV generation can be
found in Section 5.

4 RELATION-GUIDED CAD RECOMPOSITION
In each iteration, we get the fused partial scan of each object, and
our goal is to retrieve a similar CAD model for each object with an
accurate pose. Our key observation is that as we only get a partial ob-
servation of each object during the scanning process, directly using
the global latent code of the partial input to simultaneously retrieve
the object and estimate the pose as in previous works [Avetisyan
et al. 2018a, 2019, 2020; Ishimtsev et al. 2020; Izadinia and Seitz 2018]
will lead to inaccurate results, and the retrieval will benefit with
a more accurate pose estimation. Therefore, we first get an initial
object pose estimation when considering each object separately, and
then later use the relation between the objects as well as the relation
between the object and layout to perform a global refinement of all
the object poses and the layout. The refined object poses together
with the partial point cloud are then used to get a better retrieval
result with higher similarity and more accurate alignment.

4.1 Room layout construction
Once the new point cloud captured by the new observation is fused
with the existing point cloud of the scene, we construct the room
layout consisting of the floor and walls based on the corresponding
2D occupancy grid.
The 2D occupancy grid is generated with a side length of 5cm

for each pixel and a dilation radius of 10cm for obstacles, and each
pixel is assigned one of the three states: unknown, free, or obstacle.
Based on the assumption that the floor must contain both free and
obstacle areas in the occupancy grid, we first approximate such
areas with a polygon using the minimum polygon fitting method
[Douglas and Peucker 1973]. However, the results obtained from
the polygon fitting method usually contain too many short edges,
while in reality, the floor boundary usually consists of long and
perpendicular edges. Therefore, we further use a heuristic method
to group those short edges into longer edges. In detail, edges with
angles less than 2 degrees are considered to be parallel. We first
merge all short neighboring edges if they are parallel, and then find
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Fig. 4. The network structure for object pose estimation. We first predict
the rotation matrix 𝑅 for the normalized partial scanned point cloud of the
object 𝑃0 to get the point cloud 𝑃1 in canonical space. Then the shape feature
𝑓 is extracted and the axis-aligned bounding box 𝐴 corresponding to the
complete shape of the object is predicted. An additional shape completion
supervision is activated only when training to help with the bounding box
prediction. The oriented bounding box 𝑂 of the input point cloud 𝑃0 is
finally generated by rotating 𝐴 with the inverse rotation matrix 𝑅⊤.

and remove the local bands that appear in the middle of two parallel
edges to get all long edges. Finally, we use the extension lines of
the top few long edges to subdivide the space and enclose the floor
region, which results in a boundary polygon as shown in Figure 3.
To further construct the walls, we generate a plane with a pre-

defined height passing through the edge and perpendicular to the
floor if there are sufficient 3D points projecting on such edge. As a
result of the layout construction step, we will get a floor boundary
and several walls.

4.2 Object pose estimation
For the partial scan of each object, we consider the pose estimation
as a variant of the amodal detection problem [Deng and Latecki
2017; Qi et al. 2019; Yu et al. 2022], where the oriented bounding
box (OBB) matching the complete shape of the object is predicted.
However, as we find that it is not robust to predict the OBB directly,
we adopt a two-step prediction method, where we first rotate the
input into a canonical space to make it axis-aligned and then predict
the axis-aligned bounding box (AABB) in such space. The predicted
AABB can then be transformed back to the original world coordinate
to get the desired OBB. Note that as our input is a partial point cloud
while our goal is to predict the bounding box of the corresponding
complete shape, we add the shape completion in the canonical space
as an auxiliary task to help improve the accuracy of the second
AABB prediction step.

Figure 4 shows the network structure of the object pose estima-
tion. Given the partial point cloud of the object, we first sample
𝑛=2048 points using farthest point sampling (FPS) and represent
the point cloud using the local coordinate to get the input of our
network 𝑃0. Then we predict a 6D rotation vector 𝑅 as in [Zhou
et al. 2018] with pointnet [Qi et al. 2016] as the encoder to transform
𝑃0 into the canonical space. The updated point cloud 𝑃1 is then
passed to a point transformer encoder [Zhao et al. 2020] to get a
global feature 𝑓 . Then this global feature 𝑓 is used to present the
AABB 𝐴 and the completed shape 𝐶 , where the decoder for AABB
prediction consists of 3 MLP layers while the decoder for shape

completion uses FoldingNet [Yang et al. 2017] as in the SOTA shape
completion method [Yu et al. 2021]. Finally, the predicted AABB
can be transformed back with the inverse rotation matrix 𝑅⊤ to get
the desired oriented bounding box 𝑂 .

The loss function of the pose estimation network is then defined
as:

𝐿obj = 𝜔r𝐿r + 𝜔b𝐿b + 𝜔c𝐿c (1)

where 𝐿r, 𝐿b, and 𝐿c are the rotation, AABB, and completion losses
against the ground-truth. In our experiments, we set the weights 𝜔r,
𝜔b and 𝜔c as 1, 1 and 10, respectively. The rotation loss 𝐿r is simply
𝐿2 loss. For the AABB prediction loss 𝐿b, we use a modified 3D Focal
EIoU Loss based on the method [Zhang et al. 2021b], making it more
sensitive to the difference between two axis-aligned bounding boxes
and leading to more accurate prediction result. For the completion
loss 𝐿c, we propose a weighted chamfer distance loss by adding a
combination weight on the second term of standard chamfer dis-
tance function to take the distance of a completed point to the input
partial points into consideration. Intuitively, when completing a
shape from a partial input, it is usually more difficult to generate
missing points that are far away from the input, so we set a weight
to give more priority to those points. The completion loss 𝐿𝑐 is
defined as:

𝐿𝑐 (𝑃1,𝐶,𝐶) =
∑︁
𝑝∈𝐶

𝑑2 (𝑝,𝐶) + 1
𝐷 (𝑃1,𝐶)

∑︁
𝑞∈𝐶

𝑑 (𝑞, 𝑃1)𝑑2 (𝑞,𝐶) (2)

where 𝑃1 is the partial input transformed in the canonical space,
𝐶 and 𝐶 are the predicted and ground-truth completed shapes, re-
spectively. The point-to-set and set-to-set distances are defined as
𝑑 (𝑝,𝑄) = min

𝑞∈𝑄
| |𝑝 − 𝑞 | |2 and 𝐷 (𝑃,𝑄) = max

𝑞∈𝑄
𝑑 (𝑞, 𝑃).

4.3 Relation-guided optimization
With the extracted layout and estimated pose for each object, we
further utilize their relations to perform a global optimization for
refinement. To make full use of the relationships between objects
and the layout, the floor and walls are considered separately, since
the floor mainly provides direct or indirect supporting relationships
to all objects while the walls may provide possible parallel or per-
pendicular relations to adjacent objects. For all the element pairs,
including object-object, object-wall, and object-floor, we would like
to further ensure that there is no collision. To consider and constrain
all kinds of relations mentioned above, we construct a scene graph
and design a relation-guided graph convolutional network (RGCN)
for optimization.

Scene graph construction. The scene graph we constructed is a
fully connected graph connecting all the elements in the scene,
including objects, walls, and the floor. For each object node, we
denote it as 𝑂 = (𝑓𝑂 , 𝐵𝑂 ), where 𝑓𝑂 is the encoded shape feature
during pose estimation, and𝐵𝑂 is the corner set of the predictedOBB
in Section 4.2. Note that as the OBB of each object is derived from
the predicted AABB in the canonical space, we can get a consistent
corner for all the object boxes. For each wall node, we denote it as
𝑊 = (𝑛𝑊 , 𝑐𝑊 , 𝐵𝑊 ), where 𝑛𝑊 is the unit normal vector, 𝑐𝑊 is the
center position, and 𝐵𝑊 is the corner set of the wall boundary. For
the floor node, we denote it as 𝐹 = (𝑛𝐹 , 𝑐𝐹 , 𝑧𝐹 , 𝐵𝐹 ), where 𝑛𝐹 is the
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Fig. 5. The network structure of our relation-guided graph convolutional network (RGCN). With the constructed scene graph, we first encode the node features
using three different encoders based on the node type, and then three different subgraphs obtained by grouping different types of edges (indicated using
different colors) are used to compute the updated messages separately, which are then added to the initial node features to get all features updated. The
optimized pose for each object and the correlation confidence between each pair of objects are then predicted from the updated features, respectively. The
ground truth layout and object bounding boxes are drawn using the dashed lines, while the predicted ones before and after the optimization are drawn using
transparent boxes for comparisons. Note how the object poses have been refined through our relation-guided optimization.

unit normal vector, 𝑐𝐹 is the center position, 𝑧𝐹 is the z value of the
floor in the world coordinate system where we assume that the floor
is perpendicular to the z-axis, and 𝐵𝐹 also denotes the corner set of
the floor boundary. The full set of graph nodes can be represented
as 𝑉 = {𝑂1,𝑂2, . . . ,𝑊1,𝑊2, . . . , 𝐹 }. For each edge 𝐸𝑖 𝑗 connecting
two nodes 𝑉𝑖 and 𝑉𝑗 , we denote it as 𝐸𝑖 𝑗 = (𝑑𝑖 𝑗 , 𝑟𝑖 𝑗 ), where 𝑑𝑖 𝑗 is
the distance between two nodes and 𝑟𝑖 𝑗 is the ratio between the
overlapped region and the union volume (IoU) of the bounding
boxes of those two nodes. Note that there are three different types
of edges considering the types of connecting nodes, including 𝑂𝑂
for object-object, 𝑂𝑊 for object-wall, and 𝑂𝐹 for object-floor. 𝑑𝑖 𝑗 is
equal to the distance of centers between two objects for 𝑂𝑂 edges
and the minimal distance between the center of the object and the
floor or the wall otherwise. Moreover, for the floor and walls that
were originally just sliced, we added a small thickness to get the
bounding box to the computation of overlap.

Support distance calculation. To make sure that object poses are
physically valid with sufficient support, we extract the support
relations between objects and calculate the support distance for
each object to indicate howmuch it is floating or overlaps with other
objects. First, the oriented bounding boxes and the centroids of all
scanned objects are projected onto the floor along the 𝑧-axis, and
the objects are clustered into different groups based on whether the
projected centroid of an object is in the projected oriented bounding
box of another object. Then, for each group, we construct the support
relations by comparing the 𝑧 values of centroids to get a sorted object
list𝑂 = {𝑜𝑏 𝑗0, 𝑜𝑏 𝑗1, 𝑜𝑏 𝑗2, ..., 𝑜𝑏 𝑗𝑘 } with increasing 𝑧 values and 𝑜𝑏 𝑗0
referring to the floor. After that, we calculate the distance between
each pair of adjacent objects in 𝑂 , and define the support distance
for each object 𝑜𝑏 𝑗𝑖 as follows:

𝑑𝑠 (𝑜𝑏 𝑗𝑖 ) =
𝑖−1∑︁
𝑗=0

𝑆𝐷 (𝐵 𝑗 , 𝐵 𝑗+1) (3)

d0
dl1

dl2

FloorFloorFloorFloor

top view

side view

Fig. 6. Support relation identification (left) and support distance term com-
putation (right). We project both the bounding box and the centroid of the
point cloud of each object from the top to the floor to determine the sup-
port relation. For two vertically adjacent objects, the one on the top will be
supported by the one on the bottom if their projecting boxes are overlapped
and the top centroid is inside the bottom projecting box as well. For the
support distance, we compute both overlap distances, e.g., 𝑑𝑜 and levitation
distances, e.g., 𝑑𝑙1 and 𝑑𝑙2, and accumulate all the distances between the
object and the floor following the support relationship shown in the left to
get the final support distance term for each object.

where𝐵 𝑗 is the oriented bounding box of𝑜𝑏 𝑗 𝑗 in𝑂 , and 𝑆𝐷 (𝐵 𝑗 , 𝐵 𝑗+1)
is the distance between the top surface of 𝐵 𝑗 and the bottom surface
of 𝐵 𝑗+1, which is defined as the absolute value of the minimal signed
distance between points on those two surfaces. Figure 6 gives an
example of the extraction of support relations and the computation
of support distance.

Relation-guided graph convolutional network (RGCN). We use
three different node encoders to encode three different types of
graph nodes into features with the same dimension and use the
same edge encoder for all the edges. Then for the message pass-
ing in RGCN, as we want the network to automatically learn the
different impacts of different types of relations on the final opti-
mization, we use different subnetworks to compute the message
pass for different subgraphs grouped based on edge types. Once the
information gets accumulated, all the node features will be updated
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and used for the object OBB and layout refinement through a pose
decoder. Moreover, we also use the updated node features to output
the correlation confidence between each pair of objects, which will
later be used for NBV generation to check the objects with high
correlation in more detail.
Figure 5 illustrates the main structure of the RGCN and the pro-

cess of the relation-guided optimization. More network details can
be found in the supplementary material. When training the RGCN,
we use the following loss function:

𝐿𝑠𝑐𝑒𝑛𝑒 = 𝜔v𝐿𝑣 + 𝜔f𝐿𝑓 + 𝜔w𝐿𝑤 + 𝜔c𝐿𝑐 (4)

where 𝐿𝑣 is the overlap loss measured for each pair of graph nodes,
𝐿𝑓 is the support loss measured between the floor and each object
node, and 𝐿𝑤 is the orientation loss measured between each wall
and its adjacent objects, whose distance to the wall is less than 20cm.
𝐿𝑐 is the correlation loss that measures the probability of two objects
being correlated, i.e., close-by or aligned. In our experiments, we
set 𝜔v = 0.2, 𝜔f = 0.5, 𝜔w = 0.1, and 𝜔c = 0.2.

All these loss terms are defined in more detail as follows:

𝐿𝑣 =
∑︁

𝑉𝑖≠𝑉𝑗 ∈𝑉
𝐼𝑜𝑈 (𝑉𝑖 ,𝑉𝑗 ) (5)

𝐿𝑓 =
∑︁
𝑂𝑖 ∈𝑉

𝑑𝑓 (𝑂𝑖 ) (6)

𝐿𝑤 =
∑︁

𝑊𝑗 ∈𝑉 ,𝑂𝑖 ∈Ad(𝑊𝑗 )
𝑑𝑤 (𝑂𝑖 ,𝑊𝑗 ) (7)

𝐿𝑐 = 𝐶𝐸 ({𝐶 (𝑒)}𝑒∈𝑂𝑂 , {𝐶𝑔𝑡 (𝑒)}𝑒∈𝑂𝑂 ) (8)
where 𝐼𝑜𝑈 is calculated using the volumetric representation with
the dimension of 103, 𝑑𝑓 is the accumulated support distance of
the object, 𝑑𝑤 is computed as the minimum angle to make either
𝑥-axis or 𝑦-axis of the object OBB parallel or perpendicular to the
wall. 𝐶𝐸 is the cross-entropy loss function, and 𝐶 (𝑒) and 𝐶𝑔𝑡 (𝑒) are
the predicted correlation and the ground truth correlation extracted
using the GT boxes of the edge 𝑒 . Moreover, the ground truth corre-
lation 𝐶𝑔𝑡 between each pair of objects with poses 𝑃 = (𝑡𝑝 , 𝑟𝑝 ) and
𝑄 = (𝑡𝑞, 𝑟𝑞) connected by the edge 𝒆 is defined as:

𝐶𝑔𝑡 (𝑒) = exp(𝑤𝑆𝑆𝐷 (𝑃,𝑄) +𝑤𝑇𝑇𝐸 (𝑡𝑝 , 𝑡𝑞) +𝑤𝑅𝑅𝐸 (𝑟𝑝 , 𝑟𝑞)) (9)

where SD is the distance between two oriented bounding boxes
previously used in Equation 3, and TE and RE are the translation
error and rotation error defined as follows:

𝑇𝐸 (𝑡𝑝 , 𝑡𝑞) = | |𝑡𝑝 − 𝑡𝑞 | |2 (10)

𝑅𝐸 (𝑟𝑝 , 𝑟𝑞) =
arccos(1 − ||(𝑟𝑝 − 𝑟𝑞) ·

[
1 0 0

]⊤ | |22/2)
100

(11)

Note that if there does not exist a support relation between 𝑃 and𝑄 ,
we set the value 𝑆𝐷 (𝑃,𝑄) as 1. The combination weights 𝑤𝑆 , 𝑤𝑇 ,
and𝑤𝑅 are set as -0.6, -0.2, and -1 in our experiment.

4.4 Geometry-aligned retrieval
Unlike previous works, which usually use an implicit latent feature
only for CAD model retrieval and lead to unstable results when the
input is only partially scanned, we split the retrieval task into two
steps, where we first use the implicit feature to retrieve top-𝑘 CAD

Occupancy
Decoder

Implicit
Feature
Retrieval

... ...

Points
Transformer

Input

Explicit
Geometry
Retrieval

Fig. 7. The network structure of for geometry-aligned retrieval. Given the
partial point cloud of the object as input, we first retrieve top-k candidates
CAD model from the dataset by matching the implicit feature. Then the
occupancy of the input point cloud is decoded and compared with the
occupancies of all candidate models to select the one with the best geometry-
matching as our final output.

models and select the one aligned best with the input partial point
cloud given the estimated OBB.
To compute the geometry alignment efficiently, we adopt an

encoder-decoder network structure to predict the complete occu-
pancy of the input partial scan inside the estimated OBB, where
the resolution is set to be 103, as shown in Figure 7. At the same
time, we also ensure that the embedded feature is similar to the one
obtained by the corresponding ground-truth CAD model during
the training. During inference, we first use the embedded feature to
retrieve top-𝑘 CADmodels from the given dataset, and then for each
CAD model, we align its bounding box with the estimated OBB of
the partial input and select the one with the lowest matching error,
where the matching error between the occupancy of the CADmodel
𝑀 and the predicted occupancy of the partial scan 𝑃 is defined as:

𝐸occ (𝑀, 𝑃) = 𝜔𝑃𝑑occ (𝑃,𝑀) + 𝜔𝑀𝑑occ (𝑀, 𝑃) (12)

where

𝑑occ (𝐴, 𝐵) = | |max(OCC(𝐴) − OCC(𝐵), 0) | |2 (13)

with 𝑂𝐶𝐶 (∗) indicating the occupancy of the corresponding input
scan. We set 𝜔𝑃 = 0.8 and 𝜔𝑀 = 0.2 to give more penalty for parts
that are only located on the partial scans but not occupied by CAD
models.

Once the CAD model is selected and its initial pose is determined
by the bounding box fitting, we perform 10 iterations of the ICP
method [Besl and McKay 1992] to fine-tune the alignment between
the CAD model and the partial points to get the final CAD recom-
position.

5 RELATION-AWARE NBV GENERATION
Once the CAD recomposition is generated, our method automati-
cally selects the next viewpoint to explore the unknown scene as
well as further improve the recomposition quality via autonomous
scanning. As the CAD recomposition can benefit from more object
and relation information, other than the frontier points commonly
used to guide the exploration, we further define a set of interest
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points based on current CAD recomposition result to localize the
region of interest (ROI) and then generate NBV pointing to the most
interesting region with less moving efforts.

5.1 Interest point construction
Frontier point. The frontiers of the scanned scene are generated

from the updated occupancy grid via the Canny algorithm [Canny
1986]. All pixels lying on the frontiers are clustered by the connec-
tivity. For each pixel cluster of frontiers, we regard the diagonal
length 𝐿𝑑𝑖𝑎𝑔 of its minimal bounding box as the approximate length
of the frontier corresponding to the cluster. The frontier points are
extracted by the farthest point sampling method with the number
of 𝑁𝑒𝑥𝑝 = 𝐿𝑑𝑖𝑎𝑔/𝛿𝑒𝑥𝑝 , where 𝛿𝑒𝑥𝑝 = 0.5𝑚, which results in at least
one frontier point for each cluster.

Object point. For each object, we compare the occupancy grid of
the input scan and the retrieved CAD model. If more than half of
the corresponding grids have a difference larger than 0.5, then we
generate an object point. We first find the point 𝑝𝑚 on the CAD
model that is the farthest to the input scan, and then find the point
𝑝𝑠 on the input scan that is closest to 𝑝𝑚 . To make the interest point
can give more information to guide better retrieval but at the same
time provide a new scan that has sufficient overlap with the current
scan, the new object point is defined as 𝑝 = 0.75𝑝𝑚 + 0.25𝑝𝑠 .

Relation point. For the relation point, we would like to discover
object pairs that are supposed to have strong relationships but are
not satisfied in the current CAD recomposition, where the deviation
weights are assigned to the corresponding edges to form interest
groups and one relation point is generated for each group.
In more detail, we mainly care about two types of relationships:

support and correlation. For support, we can first identify object
pairs that have a support relation based on the current object poses,
denoted as the support confidence, as well as computing their current
vertical distances to serve as the support deviation weight on the
corresponding edges. For correlation, we can also identify object
pairs that are supposed to have correlation based on the correlation
probability obtained together with the refined object poses during
the global optimization in Section 4.3, and then compute the correla-
tion deviation weight based on the current object poses to add to the
corresponding edges. Then, both support deviation and correlation
deviation weights are combined to get the final deviation weights.
Moreover, we also accumulate the likelihood of two objects having
an important relationship, referred to as relation confidences, which
is a combination of support confidence and correlation confidence
mentioned above.
In order to find the regions where the poses of objects need fur-

ther refinement, we first select objects having higher deviation with
others and then cluster them into groups based on their relation
confidence. In detail, the edges with deviation larger than 0.5, named
relation edges, are selected, sorted, and grouped by the relation con-
fidence from high to low. To split relation edges into several groups
located in local regions, we iteratively select all the groups. Each
time, we first select the edges with the highest relation confidence.
We then select the edges from existing relation edges, making sure
no more than 4 nodes remain in the current group. Once a group

C2

C1

(a) (b)

Fig. 8. Candidate viewpoint generation. (a) Once the voxelized heatmap is
constructed, we select several candidate ROI points (red points) with high
heat values. (b) For each ROI point, taking the ROI point inside the dashed
box for an example, we first generate an initial viewpoint 𝐶1 pointing to
both the candidate point and the frontier point (yellow point), and then
sample new viewpoints on both sides to find the one that has all interest
points in view, including all yellow, green, and blue points assigned to this
candidate ROI point, to get the corresponding viewpoint𝐶2.

is selected, its nodes, along with the connected edges cannot be
selected again. When the iteration ends, there are some groups of
objects generated. In order to make the viewpoint cover as many
objects as possible in the group, a relation point is generated at the
center of the midpoints of all edges in each group. The robot can use
this relation point to capture more accurate relations of the poses
of objects in the group.

5.2 NBV generation
Our goal is to select the next viewpoint that can not only explore
the unknown area as much as possible but also help refine the CAD
recomposition results in the aspect of both object pose and CAD
retrieval. As exploration still plays the dominant role during au-
tonomous scanning, we first generate a set of candidate viewpoints,
which observe as much of the unscanned area as possible and at the
same time ensure that there are at least one object point and one
relation point included in the observation, and then select the one
with minimal traveling cost considering the current robot pose as
the NBV. Note that if the candidate viewpoint is unreachable, the
corresponding traveling cost will be infinite and such viewpoint
will not be selected.

More specifically, once all points of interest are obtained, we
generate spherical regions with a radius of 1m centering each point
as the point-wise ROI. A voxelized heatmap is then constructed
with a side length of 20cm per voxel, and the heat value on each
voxel 𝑣 at the region of free areas is defined as:

ℎ(𝑣) = 𝜔𝑒𝑥𝑝1𝑒𝑥𝑝 (𝑣) + 𝜔𝑜𝑏 𝑗1𝑜𝑏 𝑗 (𝑣) + 𝜔𝑟𝑒𝑙1𝑟𝑒𝑙 (𝑣) (14)

where 1𝑒𝑥𝑝 , 1𝑜𝑏 𝑗 and 1𝑟𝑒𝑙 are indicator functions that indicate
whether the voxel 𝑣 is contained in the any of the ROIs determined
by the set of frontier points, object points, and relation points. We
set 𝜔𝑒𝑥𝑝 = 0.7, 𝜔𝑜𝑏 𝑗 = 0.2, and 𝜔𝑟𝑒𝑙 = 0.1 to reflect importance of
exploration.

Candidate viewpoints are then generated based on the constructed
voxelized heatmap, as shown in Figure 8. We first select several dis-
crete voxels with the highest heat values as the candidate points,
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ensuring the distances between each two candidate points are no
less than 1m, shown as the red points in Figure 8 (a). Note that
during the selection, we further ensure that the candidate points
are near the frontier points by requiring the heart value to be larger
than 0.7, and the scanning process terminates if no more points
satisfy the condition. For each candidate point, we generate an
initial viewpoint 𝐶1 observing the most unknown area (pointing to
the yellow frontier point) and then sample new viewpoints on both
sides of 𝐶1 on a 1m-radius circle centering at the candidate point
until all nearby interest points are in view to get the corresponding
viewpoint candidate𝐶2; see Figure 8 (b). Finally, we choose the view-
point candidate that takes minimal effort for the robot to transfer
from the current position as our NBV.

6 RESULTS AND EVALUATION

6.1 Experiment setup
Environment. We useHabitat [Savva et al. 2019] as our simulation

environment for rapid experiment iterations, which supports the
standard control of the robot and simulates the interactions with the
real world on GPU. To better simulate the camera noise in reality,
we add the synthetic noise proposed in the work of [Handa et al.
2014] to the depth observation. A desktop PC processes all data with
AMD Ryzen 9 5900X CPU (3.7GHz×12), 48GB RAM, and an Nvidia
GeForce RTX3080 GPU.
When conducting experiments in the real world, we use Fetch

[Wise et al. 2016] with a RealSense Depth Camera D435i held in
hand for scanning and a SICK 2D sensor for tracking and navigat-
ing.

Dataset. We conduct our experiments on the Scan2CAD dataset
[Avetisyan et al. 2018b], which consists of 1506 realistic scenes
from the ScanNet dataset [Dai et al. 2017] with 14225 aligned CAD
models from the ShapeNet dataset [Chang et al. 2015] containing 55
common object categories. We train our networks on 1204 scenes
(80%) and test on the remaining 302 scenes (20%) following the split
in Scan2CAD [Avetisyan et al. 2018b].

6.2 Evaluation metrics
As our goal is to recompose the unknown indoor scene with CAD
models via autonomous scanning, we evaluate our method in two
aspects: scanning efficiency and recomposition accuracy.

Scanning efficiency. To evaluate the efficiency of autonomous
scanning, we mainly focus on the resource and time consumption
during the scanning process.

We first use the same metrics Distance Consumption (DC) and
Time Consumption (TC) as in the work of [Guo et al. 2022], which
are measured by the average distance of the total scanning path
in meters and the average scanning time of the robot in minutes.
Then, we use NBV Count (#NBV) to measure the average number
of the generated NBVs during the scanning process, and Storage
Consumption (SC) to measure the average of the maximum RAM
and GPUmemory consumption for storing intermediate data during
the scanning process in GBs.

Recomposition accuracy. To evaluate the accuracy of CAD recom-
position, we mainly focus on the accuracy of semantic categories of

Table 1. Quantitative comparison with offline CAD recomposition baselines,
including Scan2CAD [Avetisyan et al. 2018a], SceneCAD [Avetisyan et al.
2020] and Interactive Scene Reconstruction (ISR) [Han et al. 2021],
with either manual scans (Manual) provided in the ScanNet [Dai et al. 2017]
dataset or autonomous scans (Auto) generated by our method as input.

#Frame Method TC ↓ SC ↓ CA ↑ PA ↑ PE ↓ GE ↓

Manual
(94)

Scan2CAD 10.373 20.814 0.484 0.307 0.445 0.049
SceneCAD 11.763 23.624 0.491 0.524 0.442 0.042

ISR 3.118 26.192 0.412 0.496 0.440 0.024
Ours 2.940 5.325 0.552 0.628 0.357 0.011

Auto
(24)

Scan2CAD 9.854 13.482 0.467 0.284 0.509 0.054
SceneCAD 11.072 14.526 0.483 0.492 0.515 0.046

ISR 0.868 15.517 0.391 0.473 0.520 0.026
Ours 0.791 5.271 0.562 0.636 0.352 0.010

retrieved CAD models, denoted as Class Accuracy (CA), and their
alignment with GT CAD models.
For alignment accuracy considering the object poses only, we

follow the metric used in related works [Avetisyan et al. 2018a, 2019,
2020; Gümeli et al. 2021; Maninis et al. 2020], which considers the
translation error (TE), rotation error (RE) and scaling error (SE)
between the predicted pose 𝑃𝑝 = (𝑡𝑝 , 𝑟𝑝 , 𝑠𝑝 ) and the ground truth
pose 𝑃𝑔𝑡 = (𝑡𝑔𝑡 , 𝑟𝑔𝑡 , 𝑠𝑔𝑡 ) of the scanned object, where TE and RE are
defined in Equation 10 and 11, and SE is defined as:

𝑆𝐸 (𝑠𝑝 , 𝑠𝑔𝑡 ) =
| |𝑠𝑝 − 𝑠𝑔𝑡 | |2
| |𝑠𝑔𝑡 | |2

(15)

where 𝑡∗ is the center position of the object, 𝑟∗ is the 3 × 3 rotation
matrix of the object, and 𝑠∗ are the XYZ-ordered scaling ratios of
the oriented bounding box of the object.
We then use Pose Accuracy (PA) to measure the proportion of

retrieved CAD models with 𝑇𝐸 ≤ 0.2, 𝑅𝐸 ≤ 0.2, and 𝑆𝐸 ≤ 0.2 as
in previous works, and use Pose Error (PE) to further measure
average alignment error:

𝑃𝐸 (𝑃𝑝 , 𝑃𝑔𝑡 ) = 𝑇𝐸 (𝑡𝑝 , 𝑡𝑔𝑡 ) + 𝑅𝐸 (𝑟𝑝 , 𝑟𝑔𝑡 ) + 𝑆𝐸 (𝑠𝑝 , 𝑠𝑔𝑡 ) (16)

For alignment accuracy further considering the object geometry,
we define a new metric Geometry Error (GE) to calculate the
chamfer distance between the GTCADmodel and the corresponding
retrieved CAD model. Let us denote the set of GT CAD models as
O and the retrieved CAD models as C, then the Geometry Error
(GE) is defined as follows:

𝐺𝐸 (O, C) = 1
|O|

∑︁
𝒐∈O

𝑇𝐶𝐷 (𝒐, C) (17)

where 𝑇𝐶𝐷 is the trunked chamfer distance function defined as:

𝑇𝐶𝐷 (𝒐, C) =
{
𝑚𝑖𝑛(𝐶𝐷 (𝒐, 𝒄𝒐), 1) ∃𝒄𝒐 ∈ C

1 𝑒𝑙𝑠𝑒
(18)

where 𝐶𝐷 is the chamfer distance and 𝒄𝒐 is the corresponding
retrieved CADmodel for GT CADmodel 𝒐. We truncate the chamfer
distance with 1 to ignore the intolerable value brought by the terrible
retrieval result, and at the same time add a penalty for the object
that has annotated CAD model but without retrieved CAD models.
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Fig. 9. Qualitative comparison with offline CAD recomposition baselines, including Scan2CAD [Avetisyan et al. 2018a], SceneCAD [Avetisyan et al. 2020] and
Interactive Scene Reconstruction (ISR) [Han et al. 2021], with either manual scans (Manual) provided in the ScanNet [Dai et al. 2017] dataset or
autonomous scans (Auto) generated by our method as input.
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6.3 Comparison with offline CAD recomposition baselines
We first compare our method to existing CAD recomposition meth-
ods, including Scan2CAD [Avetisyan et al. 2018a], SceneCAD [Avetisyan
et al. 2020] and Interactive Scene Reconstruction (ISR) [Han
et al. 2021]. Note that all those existing CAD recomposition meth-
ods are offline methods, requiring either the reconstructed scene
or a pre-captured RGBD scanning sequence of the scene as input.
Thus, we conduct comparisons with either manual scans (Manual)
provided in the ScanNet [Dai et al. 2017] dataset or autonomous
scans (Auto) generated by our method as input. The extra scene
reconstructions required by Scan2CAD and SceneCAD are obtained
using the method of Voxblox++ [Grinvald et al. 2019] .
The quantitive comparisons in terms of scanning efficiency and

recomposition accuracy are shown in Table 1. We can see that our
method gets consistently better performance when compared to
those baseline methods with either Manual and Auto input.
For scanning efficiency, the storage consumption of our method

is much lower than all other methods since other methods need
to save the detailed dense point cloud of the entire scene to make
sure the reconstructed result is accurate. For recomposition accuracy,
both Scan2CAD and SceneCAD take the volumetric representation of
the entire reconstructed scene as input and such rough input repre-
sentation leads to inaccurate object pose detection. ISR gets slightly
better results than those two baselines as it retrieves CAD models
during the process of reconstruction, where the instance segmenta-
tion of scanned objects is estimated once a new framework is given
to guide a more accurate retrieval and achieve a lower GE. For our
method, other than the instance segmentation, we further predict
the OBB of the corresponding complete shape with the provided
partial point cloud, This complete OBB prediction together with our
relation-guided optimization and geometry-aligned retrieval results
in significant improvement in recomposition accuracy.
When comparing the results between Manual and Auto inputs,

we can see a general performance degradation of all other meth-
ods, as the generated frames are quite sparse and it is difficult to
estimate accurate object poses and further retrieve corresponding
CAD models given the partially scanned objects. However, the per-
formance of our method is relatively stable as the scans are selected
by our relation-aware NBV generation module tailored for the CAD
recomposition task.

Some qualitative examples are shown in Figure 9. Note that since
only SceneCAD and our method estimate the layout of the scene in
addition to the retrieved objects, we add the layout generated by
our method for other methods with a consistent rendering style. We
can see that our method is able to detect more objects compared to
Scan2CAD and SceneCAD, and further retrieve corresponding CAD
models with the guidance of relations between objects compared to
ISR, leading to the overall best results. Besides, our method main-
tains similar CAD recomposition capabilities on the autonomous
scanned data compared with the manual scanned data, while all
other methods tend to recognize only a few objects in the scene
and, in the meanwhile, the predicted poses of recognized objects
are inaccurate under the sparse observations.

6.4 Comparison with online CAD recomposition baselines
As far as we know, we propose the first method for online CAD
recomposition problem and there are no existing works that can
be directly compared to. As our method consists of two important
modules: relation-guided CAD recomposition (RelCAD) described
in Section 4 and relation-aware NBV generation (RelNBV) described
in Section 5, we replace either of those two modules with the state-
of-the-art method to derive two baselines for comparison:
• ROCA+RelNBV, where we replace our RelCAD module with ROCA
[Gümeli et al. 2021]. ROCA is the state-of-the-art method to retrieve
corresponding CAD models for objects in a single RGB image. To
incorporate ROCA into our online framework, for each new frame,
we can first obtain a set of newly retrieved CAD models using ROCA,
and then merge them with the existing retrieval results by calculat-
ing IoU and comparing semantic categories.
• RelCAD+AsyncScan, where we replace our RelNBV module with
AsyncScan [Guo et al. 2022] . AsyncScan is the state-of-the-art
method for reconstruction-oriented autonomous scanning, where
the scanning strategy is designed to increase the coverage of the
scene as well as the surface completeness of scanned objects.

Table 2 shows the quantitative comparison of our method to those
two baselines. As ROCA retrieves the CAD model for each scanned
object separately without considering their relationship, while our
method uses object relations specifically to guide the object pose
optimization, our method gets much higher recomposition accu-
racy than the ROCA+RelNBV baseline. For the RelCAD+AsyncScan
baseline, AsyncScan is a reconstruction-oriented method that leads
to more complete scene reconstruction and thus more accurate
CAD recomposition results, however, it has a much higher storage
consumption (SC) as it needs to reconstruct the scene during the
whole scanning process. As a comparison, our method gets similar
CAD recomposition results with much less storage consumption
and scanning efforts thanks to our relation-aware NBV generation
module. Some qualitative comparisons are shown in Figure 10. Note
that all the results reported in Table 2 only reflect the differences
between final CAD recomposition results, and although the final
performances between AsyncScan and our method are quite sim-
ilar in terms of recomposition accuracy, the intermediate results
obtained with different viewpoints generated using different scan-
ning strategies are actually quite different. Different scanning paths
of different methods are shown in the first row in Fig. 10. We can
see that the path generated by our scanning strategy (RelNBV) is
much shorter than the reconstruction-oriented scanning strategy
(AsyncScan), while the results are similar when equipped with our
relation-aware CAD recompositionmodule (RelCAD). The final CAD
recomposition results obtained by our method are quite similar to
those of AsyncScan with high accuracy, which also proves that
our relation-aware NBV generation strategy helps us find the most
effective viewpoint for improving CAD recomposition results.

6.5 Ablation studies
In this section, we conduct several ablation studies to validate our
design in both CAD recomposition and NBV generation modules.
Qualitative examples can be found in the supplementary materials.
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Table 2. Quantitative comparison with online CAD recomposition baselines, with either of the key modules of our method (RelCAD + RelNBV ) replaced by
the state-of-the-art method. ROCA+RelNBV refers to the baseline that replace RelCAD with ROCA [Gümeli et al. 2021], and RelCAD+AsyncScan refers to the
baseline that replace RelNBV with AsyncScan [Guo et al. 2022].

Method DC ↓ TC ↓ #NBV ↓ SC ↓ CA ↑ PA ↑ PE ↓ GE ↓
ROCA+RelNBV 45.533 7.116 27.675 8.708 0.482 0.342 0.705 0.387

RelCAD+AsyncScan 47.725 9.973 32.284 48.298 0.558 0.636 0.352 0.010
Ours (RelCAD+RelNBV) 37.806 6.045 23.646 5.271 0.562 0.636 0.352 0.010
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Fig. 10. Qualitative comparison with online CAD recomposition baselines ROCA+RelNBV and RelCAD+AsyncScan. In the first row, we show the fusion of all
captured RGBD scans with the sequence of NBVs generated by each method, where the initial view is colored in blue.
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Table 3. Ablation studies on key components of our CAD recomposition
module.

Method CA ↑ PA ↑ TE ↓ RE ↓ SE ↓ GE ↓
w/o Layout 0.513 0.548 0.122 0.106 0.173 0.028
w/o Pose 0.469 0.209 0.421 0.170 0.607 0.061
w/o Opt 0.476 0.311 0.167 0.128 0.352 0.048
w/o Geo 0.562 0.497 0.110 0.100 0.211 0.035
Ours 0.562 0.636 0.101 0.089 0.162 0.010

Ablation studies on our CAD recomposition module. Our relation-
guided scene CAD recomposition module consists of four key steps,
including room layout construction (Layout), object pose estimation
(Pose), relation-guided optimization (Opt), and geometry-aligned
CAD retrieval (Geo). To justify the design choices made in our CAD
recomposition module, we compare the performance in terms of
recomposition accuracy in the following settings:
• w/o Layout, where the layout construction module is removed
and thus will affect the following relation-guided optimization.
• w/o Pose, where the new weighted chamfer distance loss defined
in Equation 2 is replaced by the original chamfer distance loss.
• w/o Opt, where the relation-guided optimization module is re-
moved and the CAD model for each object is retrieved separately
once the corresponding pose is estimated. Note that without the
relation-guided optimization module, relation will not be considered
in the NBV generation step, thus no relation point will be generated
for selection.
• w/o Geo, where the CAD models are retrieved directly based on
their implicit features without considering the geometric alignment.
Table 3 shows the results of all those settings compared to our

full pipeline. We can see that our full pipeline gets the consistently
better performance, especially on the GE metric, which shows that
our designs can indeed improve the accuracy of CAD recomposi-
tion. In more detail, when compared to the (w/o Layout) setting,
the introduction of layout in relation-guided optimization helps
improve the object pose estimation, especially the ones that have
a close relation to the layout, and thus improve the overall results.
For object pose estimation, we notice that it’s quite important to
get a relatively accurate initialization for later optimization, and
without our weighted chamfer distance loss (w/o Pose), the initial
object pose estimation is inaccurate and thus the final performance
drops significantly. When lacking the relation-guided optimization
component in the (w/o Opt) setting, some objects will overlap with
other objects or the layout, resulting in large errors and undesired
results. The retrieved CAD models with only implicit features of
objects obtained in the (w/o Geo) setting can have correct semantic
categories but less accurate matching in geometry and pose, leading
to worse performance in alignment accuracy.

Ablation studies on our NBV generation module. Our relation-
aware NBV generation module consists of three different types of
interest points, including frontier points, object points, and relation
points. As frontier points are always needed during autonomous
scanning to ensure the exploration of unknown scenes, we make

Table 4. Ablation studies on key designs of our NBV generation module.

Method DC ↓ TC ↓ #NBV ↓ CA ↑ PA ↑ PE ↓ GE ↓
w/o OP 39.866 6.427 26.589 0.497 0.524 0.450 0.026
w/o RP 39.971 7.389 28.977 0.511 0.501 0.474 0.030
with ER 38.423 6.145 26.417 0.537 0.630 0.371 0.016
Ours 37.806 6.045 23.646 0.562 0.636 0.352 0.010

comparisons to two settings, including (w/o OP) by removing the ob-
ject points and (w/o RP) by removing the relation points. Moreover,
as the relations used to generate the relation points are predicted
from the relation-guided optimization module, to show its robust-
ness, we also compare with the setting where the relation scores
are calculated explicitly using Equation 9, denoted as (with ER) .
Table 4 shows the comparison results. Without either object

points or relation points, the NBV generation module tends to ex-
plore the unknown area, and thus fewer viewpoints are generated
to gather the information about objects or their relations in the
scene, which results in lower recomposition accuracy.Moreover,
the explicitly calculated relations can be inaccurate for the relation
between partially scanned objects due to the unstable object pose
estimation, and thus the corresponding generated NBVs cannot re-
ally reflect the current recomposition state and improve the results.
We found that the relation predicted by our optimization module
is more robust to the object pose noises and leads to more efficient
and stable NBV generation. Some example results can be found in
the supplementary materials.

6.6 Qualitative results
Figure 11 shows some results we obtained in our simulation envi-
ronment, where the virtual scenes are shown on the left and the
corresponding CAD recomposition results are shown on the right.
We can see that our method can work well on indoor scenes with
different layouts. Note how those irregular room boundaries are cor-
rectly constructed by our method. Moreover, most of the objects in
those given scenes are successfully detected and accurately aligned
with the retrieved CAD models, even those the input scene itself is
somewhat incomplete.

Other than the simulated environment, we also tested our method
in the real world by scanning two unknown indoor scenes with dif-
ferent scales, including one office room and one meeting room. Fig-
ure 12 shows one example result of our method on real-world scenes,
and the other result can be found in the supplementary material.
Although the arm of Fetch introduces some noise for camera pose
and the position deviation for localization when moving, we are still
able to recompose the scene with accurately retrieved and aligned
CAD models that have the same spatial structure and distribution
as the real scene.

7 CONCLUSIONS
We present an online scene CAD recomposition method with one-
pass autonomous scanning to retrieve corresponding CAD models
for objects and estimate the layout of the unknown indoor scene. A
novel relation-guided CAD recomposition module is designed to use
relation-constrained global optimization to get accurate object pose
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Virtual scene Our result
Fig. 11. Example results generated by our online scene CAD recomposition
method, with the corresponding virtual scene shown on the left.

and layout estimation for more accurate object retrieval. Besides, a
novel relation-aware NBV generation module is proposed to make
the exploration during the autonomous scanning tailored for our
composition task by considering the retrieval and relation accuracy.
Extensive experiments and comparisons are adopted to validate the
feasibility and effectiveness of our algorithm.

Limitations and future work. Our currentmethod for auto-scanning
and retrieving still has several limitations. As a complex systemwith
the incorporation of several components and dependence on some
off-the-shelf methods, the final results may be affected in differ-
ent aspects. First, there are times when the instance segmentation
does not recognize the object or recognition error leading to the
wrong retrieval results. Second, the localization error of the camera
sometimes leads to failure of pose estimation, which will further
influence the final retrieval results. Third, to enforce the support
relationship between objects, the poses of objects sometimes be-
come a little bit far away from their GT poses, which makes the
object points and relation points inaccurate and further decreases
the scanning efficiency.

There are several directions to improve our method in the future.
First, the generated interest points can be fused with learning-based
methods. Not all interest points are equally important since they are
denoted as different perspectives of the scene, and different decisions
are required for different scanning states. Therefore, it is possible to
train an agent to make better decisions via reinforcement learning

(a) Raw scan of real scene

(b) Our result

Fig. 12. Our CAD recomposition result for a real scene. (a) The fused scanned
data from all the viewpoints generated by our method. (b) The final scene
CAD recomposition, where objects with the same category are rendered
with the same color.

or other methods. Second, it will be an interesting future direction
to generate the scene recomposition with RGB observations only.
Recently some works have focused on 3D object pose estimation
from a single RGB image. These works make it possible to retrieve
CAD models and optimize the relationships directly from the RGB
image to skip saving the explicit data representations for objects.
Third, new types of sub-tasks can be introduced to our system. For
example, various interactive behaviors can be created for different
kinds of CAD models. Thus, plenty of difficult tasks can be defined
for the scene and learned in the future. Finally, there may exist
some strategies with higher efficiency by defining and learning a
new relation hierarchy or other higher-level semantic structural
information like functionality, which will bring the combination of
virtual and reality to a higher level.
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