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Fig. 1. MASH represents a 3D shape by fitting a set of Masked Anchored SpHerical distance functions as observed from the perspective of a fixed number
of anchor points in 3D space. Left shows an iterative optimization of MASH parameters, from an unoriented point cloud, leading to closer and closer
approximations to the ground-truth shape surface. Middle and right show the versatility of MASH in enabling a variety of downstream applications including
shape completion, blending, and conditional 3D generation from multi-modal inputs including text prompts, point clouds, and single-view images. On the right:
top three results were obtained by training the generator on ShapeNet, while the bottom (the dog) result was obtained on training with Objaverse.

We introduce Masked Anchored SpHerical Distances (MASH ), a novel multi-
view and parametrized representation of 3D shapes. Inspired by multi-view
geometry and motivated by the importance of perceptual shape understand-
ing for learning 3D shapes, MASH represents a 3D shape as a collection of
observable local surface patches, each defined by a spherical distance function
emanating from an anchor point. We further leverage the compactness of
spherical harmonics to encode the MASH functions, combined with a gener-
alized view conewith a parameterized base thatmasks the spatial extent of the
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spherical function to attain locality. We develop a differentiable optimization
algorithm capable of converting any point cloud into a MASH representation
accurately approximating ground-truth surfaces with arbitrary geometry
and topology. Extensive experiments demonstrate that MASH is versatile
for multiple applications including surface reconstruction, shape genera-
tion, completion, and blending, achieving superior performance thanks to
its unique representation encompassing both implicit and explicit features.
More information and resources can be found at: https://chli.top/MASH.
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networks.
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1 Introduction
Despite a plethora of well-known representations for 3D shapes in
vision and graphics, the pursuit after the right representations for
targeted tasks remains. In the context of representation learning and

SIGGRAPH Conference Papers ’25, August 10–14, 2025, Vancouver, BC, Canada.

HTTPS://ORCID.ORG/0000-0003-0850-8987
HTTPS://ORCID.ORG/0009-0006-7433-1998
HTTPS://ORCID.ORG/0000-0003-1926-5597
HTTPS://ORCID.ORG/0000-0001-7082-7845
HTTPS://ORCID.ORG/0000-0003-1991-119X
HTTPS://ORCID.ORG/0000-0003-4352-1431
HTTPS://ORCID.ORG/0000-0002-6798-0336
https://orcid.org/0000-0003-0850-8987
https://orcid.org/0009-0006-7433-1998
https://orcid.org/0000-0003-1926-5597
https://orcid.org/0000-0001-7082-7845
https://orcid.org/0000-0003-1991-119X
https://orcid.org/0000-0003-4352-1431
https://orcid.org/0000-0002-6798-0336
https://doi.org/10.1145/3721238.3730610
https://doi.org/10.1145/3721238.3730610


2 • Changhao Li, Yu Xin, Xiaowei Zhou, Ariel Shamir, Hao Zhang, Ligang Liu, and Ruizhen Hu

generative modeling, the recent success of neural fields [Xie et al.
2022] is well recognized. A key building block of neural fields is the
Signed Distance Function (SDF), which stores a single scalar defining
the closest distance to a surface. Although simple and fundamental,
SDFs are neither the most informative nor the most efficient since
many samples have to be taken to closely define a surface.
From the perspective of multi-view geometry and treating each

point in space as a viewpoint, a large and rich amount of surface
information can be observed. As we scale up per-point informa-
tion, we can reduce the number of points (views) needed to capture
the underlying surface, striving for a better tradeoff between rep-
resentational capacity and compactness. Taking such a perceptual
approach to represent 3D shapes accentuates shape understanding.
This is critical to any learning task that relies on such an under-
standing to compensate for the ill-posed nature of the task due to
sparse inputs. Primary examples of such tasks include single-view
3D reconstruction, shape completion, and text-to-3D generation.

In this work, we introduce a novelmulti-view and parametric rep-
resentation of 3D shapes called Masked Anchored SpHerical (MASH)
distances. Inspired by multi-view geometry, MASH represents a 3D
shape as a collection of observable local surface patches, each de-
fined by a spherical distance function emanating from an anchor
point of observation. The creation of such a representation is not
straightforward since one has to determine how to parametrize the
spherical distance functions and the precise demarcation of their
view ranges. Achieving a balance is paramount, as we aim to min-
imize the overlap between local regions associated with different
anchors while ensuring that the local connectivity between adjacent
patches remains intact. To this end, MASH leverages the mathemat-
ical elegance of spherical harmonics, combined with a generalized
view cone to form a parameterized base thatmasks the spatial extent
of the spherical function; see Figure 2.
Our new 3D shape representation presents several distinct fea-

tures. First, each spherical function in MASH is significantly more
informative than a single closest distance as in an SDF, while the
need for much fewer spherical functions (about 400) and the use of
spherical harmonics enable a compact representation that maintains
local surface smoothness and continuity. Second, the masking tech-
nique ensures that each patch can be accurately approximated by
spherical harmonics and provides a balance among patches to avoid
computational redundancy. To further ensure efficient optimization
and adaptation to geometric details, we introduce a differentiable
optimization scheme for MASH based on its parameterized repre-
sentation, which consists of several novel key components including
differentiable point sampling, anchored inversion transformation,
and a two-step optimization strategy with tailored loss functions.
As a compact, parametrized, and patch-based representation,

MASH offers several unique advantages in downstream applica-
tions and its versatility is at display in Figure 1. To start, MASH
is inherently equipped to handle complex topologies and can be
iteratively refined to closely approximate 3D shapes from even un-
oriented point clouds. Additionally, being parameterized, MASH
provides a natural embedding for 3D shapes and thus can be used
for shape generation, with the generative model producing MASH
representations directly instead of some intermediate, typically non-
interpretable, implicit features. The compactness introduced by the

MASH parametrization as well as the fact that different shapes can
share similar local surface patches makes our MASH-based gener-
ative models easier to train and converge faster than alternative
representations. Moreover, being patch-based hence with local sup-
port, MASH further allows explicit editing of the generated shapes,
which is difficult to achieve with purely implicit representations.
More specifically, any subset of the anchors and thus its associated
surface patches can be frozen during shape generation to facilitate
applications such as shape completion or blending.

Our main contributions can be summarized as follows:

• MASH, a novel multi-view and parametrized representation
for 3D shapes that accurately captures the surfaces of objects
with arbitrary geometry and topology. MASH is discrimi-
native yet compact, leading to more efficient learning and
inference for generative tasks compared to existing neural
implicit shape representations [Xie et al. 2022].

• A differentiable MASH optimization capable of converting
any input point cloud into a precise MASH representation.

• MASH enables multiple applications including shape gen-
eration, completion, blending, and reconstruction. For the
latter, the locality of the explicit patches and the high rep-
resentability and smoothness of each parameterized patch
enable MASH to better capture local details.

Extensive experiments validate the effectiveness of MASH in
reconstructive and generative tasks over traditional and prior im-
plicit representations, achieving superior performance thanks to
the inclusion of both implicit and explicit features in MASH.

2 Related Work
3D Shape Representations. Point clouds, meshes, and voxels have

been the most adopted explicit 3D representations. While point
clouds can be high-resolution, their unordered nature makes them
difficult to process. Triangle meshes deliver more detailed surface
geometr and are favored for tasks that require more accurate surface
representations [Gong et al. 2019; Hanocka et al. 2019; Lim et al. 2018;
Sun et al. 2024b], but their complex topologies make them harder
to encode and generate. Voxel grids, as a natural extension from 2D
pixels, are easier to process thanks to their rasterized nature and are
thus widely used for shape reconstruction and generation [Brock
et al. 2016; Choy et al. 2016; Dai et al. 2017; Girdhar et al. 2016;
Wu et al. 2016, 2015]. However, their memory consumption grows
exponentially as the resolution increases.

Implicit [Calakli and Taubin 2012; Hoppe et al. 1992; Kazhdan et al.
2006; Lin et al. 2022; Sun et al. 2024a], especially neural implicit, rep-
resentations have become popular. The latter encode shapes using
continuous functions such as SDFs [Calakli and Taubin 2012; Park
et al. 2019] or occupancy fields [Chen and Zhang 2019; Mescheder
et al. 2019; Peng et al. 2020], offering continuity, flexibility, and the
ability to represent complex topologies smoothly. However, their
implicit nature hinders explicit shape editing. Parametric methods
such as spline surfaces [Gordon and Riesenfeld 1974; Iglesias et al.
2004] and spherical harmonics [Saupe and Vranić 2001] use compact
representations but struggle to obtain suitable parametric represen-
tations to accurately describe arbitrary complex geometries.
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Our MASH representation combines the advantages of the above
representations, with the set of anchors offering the flexibility of
point clouds, the surface patches parametrized with each anchor
providing more detailed geometry, and the parametrization itself
reflecting a natural implicit embedding for 3D shapes.
Among prior works, ARO-Net [2023] is most related to MASH

since it also utilizes partial observations at a set of anchors, with the
goal of improving surface reconstruction from sparse point clouds.
However, their observation is oriented to a query point for occu-
pancy prediction and there is no parameterization or optimization
involved. In our work, we obtain an explicit parametric represen-
tation by optimizing MASH directly from a point cloud. Then a
surface can be extracted from the MASH representation.

3D Shape Generation. Recent advances in 2D image generation,
such as DALL·E [Ramesh et al. 2021], Imagen [Saharia et al. 2022],
and Stable Diffusion [Rombach et al. 2022], have inspired 3D gener-
ation methods that leverage 2D priors. DreamFusion [Poole et al.
2022] introduces Score Distillation Sampling (SDS) to optimize 3D
shapes via NeRF [Mildenhall et al. 2021], and some works focus
on extending the concept of SDS to various neural domains [Li
et al. 2023; Liu et al. 2023]. However, these methods suffer from a
long optimization time and geometric inconsistencies in multi-view
images may lead to geometric artifacts. Another line of work for
3D shape generation is to directly train and generate 3D represen-
tations. Early methods [Choy et al. 2016; Mescheder et al. 2019]
primarily utilize 3D convolutional networks to encode and decode
3D voxel grids. Point-E [Nichol et al. 2022] innovatively employs a
diffusion model based on the pure transformer network structure
to directly generate point clouds. Polygen [Nash et al. 2020] and
MeshGPT [Siddiqui et al. 2024] proposed to generate meshes by
serializing the vertices and faces of a mesh, generating high-quality
results, but their reliance on high-quality datasets limits their gener-
ality. Later, with the advent of Variational Autoencoder (VAE), many
works [Cheng et al. 2023; Gupta et al. 2023; Jun and Nichol 2023;
Zhang et al. 2023; Zhao et al. 2024] use VAE to encode 3D shapes and
decode them into occupancy or distance fields, and generate shapes
in the encoded latent space. Unlike those methods, we adopt the
explicit parametrized MASH representation directly for generation,
improving efficiency while maintaining accuracy.

3 Method
In this section, we first explain the parametric representation of
MASH in Section 3.1, and then show how to optimize the MASH
representation for a given shape in Section 3.2.

3.1 MASH Representation
Given a 3D shape 𝑆 and a point 𝑝 in space, we can define the visible
region on the surface of 𝑆 from the perspective of 𝑝 by casting rays
from 𝑝 in all directions, forming a spherical distance function cen-
tered at the anchor point 𝑝 , as shown in Figure 2 (left). Such visible
regions have been studied for shape partition [Shapira et al. 2008],
reconstruction [Shalom et al. 2010], and relationship optimization
between two shapes [Zhao et al. 2016], all suggesting that visible re-
gions can accurately characterize local shape features, while global

Fig. 2. Parametric representation of MASH for a single anchor.

structures of a 3D shape can be faithfully captured from a set of
anchor points all around the surface of the shape.
Our goal is to define a parameterized representation of these

visible regions such that a 3D shape can be represented by a set of
anchored parameters, with a simple and compact structure. To this
end, we use a set of spherical harmonics (SH) to approximate the
visible region represented by a spherical distance function. However,
the spherical distance function is discontinuous when shifting from
one surface region to other unconnected regions, as well as when
crossing view boundaries. Such discontinuities hinder the use of SH
for an accurate approximation of an entire distance function. The
key idea of MASH is to further introduce a mask to constrain the
approximation region so that even low-order SH can provide a faith-
ful approximation. Specifically, the mask is defined by a generalized
3D view cone with a parameterized free-form base.
Therefore, each anchor of our MASH can be represented by a

set of parameters A = {𝑝, 𝑣, C,V}, where 𝑝 is the location of the
anchor, 𝑣 refers to the view direction, C andV are two subsets of
parameters used to define the corresponding spherical distances and
vision mask. Figure 2 shows our MASH representation for a single
anchor point. The two subsets of parameters C andV are visualized
in the middle, and the continuous visible region characterized by
our MASH representation is shown on the right.

Parameterized spherical distances. We use a combination of SH to
represent the spherical distance function as follows:

𝑑C (𝜃, 𝜙) =
𝑙=𝐿∑︁
𝑙=0

𝑚=𝑙∑︁
𝑚=−𝑙

𝐶𝑚
𝑙
𝑌𝑚
𝑙
(𝜃, 𝜙), (1)

where 𝑌𝑚
𝑙

is the SH at frequency 𝑙 and 𝐶𝑚
𝑙
are the corresponding

combination coefficients. Thus, the SH parameters are defined as

C = {𝐶𝑚
𝑙

��|𝑚 | ≤ 𝑙, 𝑙 = 0, 1, . . . , 𝐿}. (2)

Parameterized vision mask. We use a generalized 3D view cone to
constrain the vision field and define the mask on the sphere. Note
that the common right circular cone with a fixed angle 𝛼 can only
define a circular region on the sphere, which cannot characterize the
free-form surface boundary obtained when viewing from a certain
direction as shown in Figure 2 (left). Therefore, we generalize the 3D
view cone with an anisotropic vision angle 𝛼 (𝜙), where 𝜙 ∈ [0, 2𝜋]
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Fig. 3. Differentiable MASH point sampling. Parametrization of any ray
sampled inside the view cone (left) and pre-sampled rays filtered by the
view cone (right), with each ray corresponding to one sample point.

defines a circle around the Z-axis direction and 𝛼 (𝜙) is the maximal
view range corresponding to each 𝜙 , as shown in Figure 2 (middle).

Note that 𝛼 (𝜙) is a periodic function, thus it can also be approxi-
mated by trigonometric interpolation as follows:

𝛼 (𝜙) = 𝜋𝜎 (𝑎0 +
𝐾∑︁
𝑘=1

𝑎𝑘 cos (𝑘𝜙) +
𝐾∑︁
𝑘=1

𝑏𝑘 sin (𝑘𝜙)), (3)

where

𝜎 (𝑥) = 1
1 + 𝑒−𝑥 . (4)

Thus, the vision mask can be defined by the set of parameters:

V = {𝑎0, 𝑎1, 𝑏1, . . . , 𝑎𝐾 , 𝑏𝐾 }. (5)

3.2 MASH Optimization
Given a 3D shape 𝑆 , either a mesh or a point cloud, the goal of MASH
optimization is to find a set of anchors with associated parameters
{A𝑖 }𝑀𝑖=1 = {𝑝𝑖 , 𝑣𝑖 , C𝑖 ,V𝑖 }𝑀𝑖=1 to attain high approximation quality.
To enable differentiable optimization of {A𝑖 }, we first sample

points from the surface patches defined by our MASH representa-
tion, then formulate a differential operator to calculate the sample
point coordinates from the MASH parameters. Chamfer Distances
(CDs) between the sample points and points from the given shape
define the approximation error and guide the optimization.

Moreover, note that for each anchor, intuitively,V defines a local
patch on a sphere, and C characterizes the local geometry of such
surface patch, as shown in Figure 2 (right). As C is a set of SH
parameters, it can be used to represent a spherical surface more
precisely than a planar surface. To further boost the representability
of the SH, we also introduce the inverse transformation [Katz and
Tal 2015] that can convert planner surfaces of the given shape into
spherical surfaces and thus make them easier to fit.

Differentiable point sampling. To sample points on the surface
patch defined by each anchor is essentially the same as sampling
rays inside the corresponding 3D vision cones, as each ray intersects
the surface patch at one point. Moreover, each ray also intersects the
base mask at one point and can be represented by two parameters
{𝜔,𝜙} inside the base mask as shown in Figure 3 (left).
More specifically, 𝜙 ∈ [0, 2𝜋] defines a point on the mask bound-

ary, and𝜔 ∈ [0, 1] determines the interior point on the line segment
connecting the boundary point and the center, and the ray shooting

from the anchor to that interior point be calculated by the spherical
linear interpolation [Pennec 1998]:

𝑟 (𝜔,𝜙) = slerp(z, 𝑟𝜙 , 𝜔), (6)

where z is the Z-axis direction and 𝑟𝜙 is the ray shooting from the
anchor to the boundary point determined by 𝜙 :

𝑟𝜙 = (sin(𝛼 (𝜙)) cos𝜙, sin(𝛼 (𝜙)) sin𝜙, cos(𝛼 (𝜙))), (7)

with 𝛼 (𝜙) defined by Equ. (3).
Nowwith the sampled ray 𝑟 (𝜔,𝜙), the corresponding intersecting

point on the surface patch can be obtained by moving the anchor
along the ray with the corresponding spherical distance 𝑑 (𝛼 (𝜙), 𝜙)
defined by Equ. (1). As all the computation so far is conducted in the
local coordinate of the anchor, to get the final position of the points
on the surface, we still need to apply transformation determined
by the position 𝑝 and view direction 𝑣 of the anchor. Therefore, the
final surface point can be obtained as follows:

𝑝 (𝜔,𝜙) = 𝑝 + R𝑣 · 𝑑 (𝜔𝛼 (𝜙), 𝜙) · 𝑟 (𝜔,𝜙), (8)

where R𝑣 is the rotation matrix determined by 𝑣 and defined as:

R𝑣 = cos𝜃𝑣I + (1 − cos𝜃𝑣)𝑘𝑘𝑇 + sin𝜃𝑣K, (9)

with

𝑘 =
𝑣

∥𝑣 ∥ , 𝜃𝑣 = ∥𝑣 ∥, K =


0 −𝑘𝑧 𝑘𝑦
𝑘𝑧 0 −𝑘𝑥
−𝑘𝑦 𝑘𝑥 0

 . (10)

Note that to uniquely determine R𝑣 from 𝑣 as above, 𝑣 does not
directly record the exact view direction of the anchor, but instead
stores the rotation axis (in direction 𝑘) and rotation angle (in magni-
tude 𝜃𝑣 ), which are used to rotate the local coordinate of the anchor
so that the Z-axis is pointing to the view direction.

To sample a set of rays inside the view cone, one straightforward
way is to uniformly sample 𝜔 ∈ [0, 1] and 𝜙 ∈ [0, 2𝜋]. However,
this kind of sampling usually leads to non-uniform distribution of
corresponding sample points on the surface patch, with local regions
staying farther to the anchor get sparse points. To ensure more
uniform sampling on the surface patches, we pre-sample uniform
points on a unit sphere and then select the subset of points inside
our view cone for the shooting rays, as shown in Figure 3 (right).

In more detail, we first uniformly sample 𝑁dir points on the unit
sphere using Fibonacci sampling [Keinert et al. 2015]. Therefore, we
have a set of pre-defined ray directions parametrized in the spherical
coordinate {𝜃pre

𝑗
, 𝜙

pre
𝑗

}, with

𝜃
pre
𝑗

= arccos(1 − 2 · 𝑗 − 1
𝑁dir

), 𝑗 ∈ [1, 𝑁dir], (11)

𝜙
pre
𝑗

= (1 +
√
5) · 𝜋 · ( 𝑗 − 0.5), 𝑗 ∈ [1, 𝑁dir] . (12)

Then, we can convert those two parameters into the local coordinate
of our base mask {𝜔pre

𝑗
, 𝜙

pre
𝑗

} with 𝜔pre
𝑗

= 𝜃
pre
𝑗

/𝛼 (𝜙pre
𝑗

), and then
filter the parametric pre-sampled directions with 𝜔pre

𝑗
∈ [0, 1].

It is worth noting that after each iteration of our MASH optimiza-
tion, the updating of the vision mask may lead to a change in the
number of filtered pre-sampled rays. Therefore, at the beginning of
each iteration, we obtain the rays within the vision mask using the
aforementioned method for subsequent differentiable calculations.
Meanwhile, this process itself is non-differentiable.
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Fig. 4. Anchored inverse transformation.

Anchored inverse transformation. Our goal is to enlarge the visible
region of each anchor when given the fixed degree of the SH and
approximation threshold, such that we can use fewer anchors to
reach to the same level of approximation. Figure 4 (left) visually
defines the inverse transformation and how the anchor is able to
approximate the given surface after applying such a transformation
(right). The curve shown on the right represents the surface that
needs to be approximated with MASH, and the colormap on top
of it indicates the fitting error, with red corresponding to a larger
error. After inverse transformation, this surface is bent around the
anchor, making it easier for SH to fit and leading to lower fitting
error, which results in a larger fitting region to the anchor.
For a more formal definition of the inverse transformation, we

first define the center of the inverse transformation 𝑂 , within the
local coordinate of each anchor, as:

𝑂 = −ℎ · z, (13)

where ℎ is the distance from the anchor along z to its parametric
surface, which can be approximated by the first SH parameter𝐶0

0 for
efficiency. Next, we define the relations between the target fitting
point 𝑝fit on the source surface and the target inverse point 𝑝inv:

𝑝inv =𝑂 + 𝑅2

| |𝑝fit −𝑂 | |22
· (𝑝fit −𝑂), (14)

𝑝fit =𝑂 + 𝑅2

| |𝑝inv −𝑂 | |22
· (𝑝inv −𝑂), (15)

where 𝑅 = 2𝐶0
0 is the radius of the inverse sphere. We apply the

inverse transformation to the parametric points sampled on the
patch surfaces using Equ. (15) before rotating and translating them.

Loss functions. Given the points 𝑄 sampled on the source shape
and the parametric points 𝑃 sampled on the MASH patches, we now
define the loss functions to guide the optimization of our MASH
parameters. First, we utilize the L1-CD and split the two main terms
as the fitting loss term 𝐿𝑓 and coverage loss term 𝐿𝑐 individually:

𝐿𝑓 (𝑃,𝑄) =
1
|𝑃 |

∑︁
𝑝∈𝑃

𝑑 (𝑝,𝑄), (16)

𝐿𝑐 (𝑃,𝑄) =
1
|𝑄 |

∑︁
𝑞∈𝑄

𝑑 (𝑞, 𝑃), (17)

where the point-to-set distance is defined as 𝑑 (𝑝,𝑄) =min
𝑞∈𝑄

| |𝑝 −𝑞 | |2.
Note that 𝐿𝑓 will make the sampled points 𝑃 to be closer to the
input point cloud 𝑄 , while 𝐿𝑐 will make the sampled points 𝑃 cover

Fig. 5. MASH optimization process.

as more points in 𝑄 as possible. Thus, we can control the moving
trend of 𝑃 by setting different weights for these two loss items.
However, these loss terms only measure the distances between

discrete point sets, which encourage anchors to cover the input
point cloud, neglecting the continuity between surfaces correspond-
ing to adjacent anchors. Therefore, we propose a new boundary-
continuous loss function to improve the connectivity of anchor
mask boundaries, which is defined as:

𝐿𝑏 (𝑃) =
1
𝑀

∑︁
𝑖∈[1,𝑀 ]

1
|𝑃𝑖 |

∑︁
𝑝∈𝑃𝑖

𝑑 (𝑝, ∪
𝑗≠𝑖
𝑃 𝑗 ), (18)

where𝑀 is the number of anchors, 𝑃𝑖 the sample point on the mask
boundary of the 𝑖-th anchor. Our full loss function is then:

𝐿 = 𝜔 𝑓 𝐿𝑓 + 𝜔𝑐𝐿𝑐 + 𝜔𝑏𝐿𝑏 . (19)

Note that all the equations we have defined so far have analytical
expressions. After filtering out the rays represented as {𝜔𝑝𝑟𝑒

𝑗
, 𝜙
𝑝𝑟𝑒

𝑗
}

within the view cone of each anchor, we can calculate the derivatives
of all MASH parameters with respect to the final loss value by
composing these functions using the Chain Rule for differentiation.
Therefore, our whole optimization scheme is differentiable.

Optimization process. We adopt a two-step optimization strategy
which first ensures a full coverage of the source shape and then
refines the local details. The optimization process for the Bunny
with𝑀 = 50 anchors is illustrated in Figure 5, with the fitting error
on each step shown on the top right corner.
For initialization, we first uniformly sample 𝑀 points from the

source point cloud𝑄 , and then move those points along their locally
estimated normal direction with a pre-defined small distance 𝑑init to
get the initial locations of all the anchors, with each anchor pointing
to the corresponding sampled point. All the remaining parameters
are set to 0, except 𝐶0

0 = 𝑑init/𝑌 0
0 , to initialize the surface patch

corresponding to each anchor as a planar disk close to the source
shape after inverse transformation.

Note that the boundary-continuous loss 𝐿𝑏 defined in Equ. (18) is
mainly used to improve the boundary continuity between anchor
patches, so it is only introduced when the main task of approximat-
ing the source shape is completed. Therefore, in the first stage of the
optimization, we set𝜔𝑏 = 0 to ensure that anchors can expand along
and cover the source shape, with 𝜔 𝑓 = 1 and 𝜔𝑐 linearly increasing
from 0.5 to 1. Once 80% of the source shape is covered, we enter the
second stage of the optimization by linearly increasing 𝜔𝑏 from 0
to 1, to ensure that each anchor continues to prioritize fitting the
object surface as its main objective and at the same time enhance the
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Fig. 6. MASH optimization results with different anchor numbers (top) and
for shapes with inner or thin structures (bottom).

connectivity between adjacent anchors. The optimization continues
until the loss 𝐿 defined in Equ. (19) converges.

4 Experiments and Results
In this section, we first show the expressive power of the proposed
MASH representation in Section 4.1, and then demonstrate how
MASH can be used in two different applications, including surface
reconstruction in Section 4.2 and shape generation in Section 4.3.

4.1 Shape Approximation
The key hyperparameters in our MASH representation are anchor
numbers𝑀 , mask degrees𝐾 , and SH degrees 𝐿, and the total number
ofMASHparameters𝑁 can be calculated as𝑁 =𝑀 (2𝐾+1+(𝐿+1)2+
6). The representation ability of MASH will grow with the increase
of𝑀 , 𝐾 , and 𝐿. However, a larger number of parameters will lead
to a reduction in computational efficiency. In all our experiments,
we set 𝑀 = 400, 𝐾 = 3, and 𝐿 = 2. Under this setting, it takes an
average of about 39 seconds on a single RTX 4090 to fit a single
object and the calculation of the loss terms takes approximately
80% of the total time. More quantitative comparisons of the results
with different hyperparameters and the effect of applying inverse
transformation can be found in the supplementary material.
Figure 6 (top) shows some MASH optimization results with dif-

ferent anchor numbers, with the surface patch represented by each
anchor visualized using a set of sampled points. We can see that
even with only 10 anchors, MASH can faithfully capture shape with
a set of bent patches. With the increase of anchor number 𝑀 , the
approximate error becomes smaller, and the sharp features are bet-
ter preserved. For example, we can see that the flat bottom of the
axe is well approximated using one anchor when𝑀 = 10, and for
the axe blade, to preserve the shape feature, our optimization tends
to place anchors on both sides and use the mask boundary to fit
the feature. Note that there is no assumption on the topology of the
given shape, and MASH can be used to approximate shapes with
inner or thin structures as shown in Figure 6 (bottom).

4.2 Surface Reconstruction
To verify that our patch-based MASH representation can effectively
capture local details, due to its locality and the high representability

Table 1. Quantitative comparison with surface reconstruction baselines on
the ShapeNet-V2 dataset. For ease of comparison of results, we multiply
the L1 Chamfer Distance (L1-CD) by 1000 here.

Method SPR PGR CONet ARO M+M MASH FPS
L1-CD↓ 89.565 6.381 17.732 15.697 5.450 4.944 4.782
L2-CD↓ 429.112 26.876 72.523 66.051 22.523 2.268 1.871
FScore↑ 0.497 0.988 0.812 0.880 0.997 0.998 0.999
𝐷𝐻↓ 0.272 0.023 0.131 0.117 0.019 0.013 0.012
𝑆𝑐𝑜𝑠↑ 0.684 0.974 0.821 0.898 0.980 0.984 0.991
NIC↓ 65.023 19.178 29.810 23.035 18.040 13.346 6.230

Table 2. Quantitative comparison of category-conditioned generations.

R-KID ↓ R-FID ↓ P-KID ↓ P-FID ↓
LN3Diff 0.222 247.379 0.792 150.578

3DShape2VecSet 0.138 173.649 0.146 38.021
Ours 0.136 163.473 0.093 30.344

Table 3. Quantitative comparison of image-conditioned generation.

L1-CD ↓ R-KID ↓ R-FID ↓ P-KID ↓ P-FID ↓ ULIP-I ↑
InstantMesh 23.112 0.056 179.755 0.079 74.720 5.552
Make-a-Shape 31.105 0.032 161.428 0.074 49.857 7.360
Hunyuan3D-1 11.227 0.023 160.322 0.036 51.534 6.367

Ours 9.555 0.018 156.141 0.005 25.074 7.530

and smoothness of each parameterized patch, we implemented an
efficient surface extraction method, coined M+M, to convert MASH
into a mesh for fair and extensive comparisons.

MASH surface extraction. Given a point cloud, we can optimize
its MASH representation as described in Section 3.2. To further
obtain a watertight surface, we first estimate the normals on points
𝑃 sampled on our surface patches and then extract the iso-surface
with marching cubes on octrees with a maximum depth 10, similar
to the proposed iso-surfacing method in PGR [Lin et al. 2022].
Note that each patch in MASH already provides a consistent

normal orientation for the points inside, we only need to find a
globally consistent orientation for all the patches. More specifically,
for the 𝑘-th sampled point of 𝑖-th anchor 𝑝𝑖

𝑘
in the sampled points

𝑃 , we first obtain its normal 𝑛src, with more details provided in
the supplementary material. Then we sample a subset of points 𝑃 ′
from 𝑃 by furthest point sampling and estimate their normals using
PGR [Lin et al. 2022]. Once the globally consistent normals for the
point set 𝑃 ′ are obtained, we reverse the normal direction of patches
where the orientation is inconsistent with those points in 𝑃 ′, and
then perform a smooth normal interpolation for better continuity
between boundaries, defined as:

𝑛𝑖
𝑘
= slerp(𝑛src, 𝑛pgr,

√︃
𝜔𝑖
𝑘
), (20)

where 𝑛pgr is the normal of the nearest point 𝑝′ ∈ 𝑃 ′ of 𝑝𝑖
𝑘
, and

𝜔𝑖
𝑘
∈ [0, 1] is the corresponding mask parameter indicating how 𝑝𝑖

𝑘

is close to the center of the belonging patch.
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Baseline comparisons. We compare our method to Screened Pois-
son (SPR) [Kazhdan and Hoppe 2013] and several other represen-
tative reconstruction methods, including Parametric Gauss Recon-
struction (PGR) [Lin et al. 2022], Convolutional Occupancy Net-
works (CONet) [Peng et al. 2020], and ARO-Net [Wang et al. 2023].
PGR is the SOTA learning-free reconstruction method from point
clouds without normals, while CONet and ARO are both learning-
based. We conduct experiments on the full dataset of ShapeNet-
V2 [Chang et al. 2015] with 8,192 input points as default.

Table 1 shows that our method outperforms all the baselines quan-
titatively. Qualitatively, as shown in Figure 8 with the zoom-ins, our
MASH representation leads to clearly superior surface reconstruc-
tion results in terms of smoothness quality, better conformation to
the spatial distribution of the input point clouds, and in particular
the ability to faithfully recover intricate geometric details (e.g., thin
structures or dense grids). Our method is also more robust to noisy
inputs, as demonstrated by representative results in Figure 9. In
addition, we have conducted further evaluations and comparisons
on sparse, non-uniform data, as well as high-genus shapes. More
details about the experiment setup, evaluation metrics, results for
per-category comparison, and explanations about the experiments
on different settings are provided in the supplementary material.

4.3 Shape Generation
Since MASH is discriminative yet compact, it can naturally serve as
embeddings for 3D shapes and has the potential to make learning
and inference more efficient compared to implicit representations.
We show how MASH can be further used for shape generation in
two most common settings, i.e., category-conditioned and image-
conditioned. Considering that MASH consists of a set of unordered
surface patches, each represented by a fixed-length set of parameters,
making it fit the architecture of 3DShape2VecSet [Zhang et al. 2023].
Therefore we also use the same conditioning for shape generation as
in 3DShape2VecSet. Specifically, for the category-conditional model,
we create a learnable embedding vector for each category and inject
it as a condition into the network. For the image-conditional model,
we extract the image features using the pre-trained DINOv2-ViT-
B/14 model [Oquab et al. 2023]. To further improve the parameter
distribution for generation, we applied an invertible piecewise linear
transform to convert it into normal distributions, which is amodified
version of the PowerTransformer in sklearn [Buitinck et al. 2013]
to ensure that the transformation error is below 1e-6 for better
precision. More details are provided in the Supplementary.

Category-conditioned generation. Our category-conditioned
model is trained on ShapeNet-V2 [Chang et al. 2015]. We compare
our method with LN3Diff [Lan et al. 2025] and 3DShape2VecSet
(S2V) [Zhang et al. 2023]. Thanks to the compactness of MASH,
the training of our network converges much quicker than other
methods. Compared to S2V, both the training and sampling time of
our model is less than one-third, with the same network backbone.
Following CLAY [Zhang et al. 2024], we measure quality of the

generative meshes using Render-FID, Render-KID, P-FID, and P-KID,
computed on 200 generated shapes and shapes randomly selected
from ShapeNet-V2 for each category. Quantitative and qualitative
comparisons are presented in Table 2 and Figure 10, respectively.

The results clearly show that shapes generated via MASH exhibit
greater diversity with better geometric details.

Moreover, as an explicit patch-based representation, one unique
feature ofMASH is that a subset of its anchors can be fixed during the
generation, which enables novel applications like part-conditional
generation and shape blending. More specifically, during the train-
ing of our category-conditional model, we replace a random pro-
portion of the initial noise fed into the generative model with the
parameters of the ground truth MASH in 80% of the steps. With this
modification, our trained category-conditioned generative model
can naturally support completion and blending tasks. Some visual
examples are shown in Figure 7, where we use the orange color to
highlight the retained shape parts, and cyan to represent the entire
generated 3D shapes. We can see that the generative model fully
utilizes the information of the fixed anchors and attempts to provide
reasonable completion or blending results, with all fixed parts are
nicely preserved. Note that the slight change of local geometry of
the given part is mainly due to surface extraction.

Image-conditioned generation. We train the image-conditioned
model on the Objaverse-82K dataset [Deitke et al. 2023] and com-
pare our method to baselines including InstantMesh [Xu et al. 2024],
Make-A-Shape [Hui et al. 2024] and Hunyuan3D-1 [Yang et al. 2024].
To perform a quantitative comparison, we randomly select 100 3D
shapes from the Objaverse dataset and render an image from a ran-
dom viewpoint for each shape to serve as the input of different
methods. Then, we normalize the 3D shapes generated by different
methods together with the 3D shapes in the dataset and manually
align them to eliminate any possible orientation inconsistencies
between the generated results and the ground truth. Other than the
metrics used for category-conditioned generations, we also intro-
duce Chamfer Distance (L1-CD) and ULIP-I as additional metrics.
The quantitative and qualitative comparisons are shown in Table 3
and Figure 11, respectively. Our method obtains generally better
results. Both InstantMesh and Hunyuan3D-1 take the input image
to generate multi-view images first and then reconstruct the 3D
shape from those images, thus they highly depend on the geometric
consistency across multiple views. Compared to other methods, the
3D shapes generated based on MASH can better preserve the topol-
ogy of the object in the image and better recover the full geometric
shape.

5 Conclusion
We introduce a newmulti-view and parametrized 3D shape represen-
tation, coined Masked Anchored SpHerical Distances (MASH), to
efficiently and accurately parameterize a given 3D shape. With a dif-
ferentiable MASH optimization algorithm, we can convert discrete
data structures such as point clouds into continuous surface-based
representations efficiently. Moreover, we demonstrate that MASH
is quite versatile for various applications including surface recon-
struction, shape completion, blending, and generations. Extensive
experiments and comparisons are conducted to validate the effec-
tiveness of our new representation.
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Fig. 7. Part-conditioned shape completion and blending enabled by our
patch-based MASH representation.

Limitation and future work. As a preliminary attempt, our repre-
sentation and corresponding optimization still have several limita-
tions. Our current MASH representation only considers geometry
and it would be interesting to explore ways to further incorpo-
rate textures. For the optimization, the current initialization evenly
distributes anchors over the given data, which sometimes lead to
sub-optimal fitting results. Adapting the anchor distribution to the
given shape will be a promising direction for future work. At last,
since the current datasets employed for training our methods and
the scale of the generative network are relatively small, the geo-
metric details of the generated results still leave much room for
improvements. Training a more powerful generative model on a
larger-scale dataset is a worthwhile pursuit for future work.
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Fig. 8. Qualitative comparison on surface reconstruction. Two zoom-ins are provided for each result to better show the geometric details.

Fig. 9. Reconstructions on the chair category with two different noise levels.
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Fig. 10. Qualitative results on category-conditioned generation compared with different methods.

Fig. 11. Qualitative results on single image to 3D generation compared with different methods.
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